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1 History and Introduction

The Cornell-SACNAS Mathematical Sciences Summer Institute (CSMSSI)
was a mathematical biology research experience for undergraduates. REU
founded in 1996. One year later, the program was renamed as the Math-
ematical and Theoretical Biology Institute (MTBI). In 2004, MTBI moved
to Arizona State University (ASU), where it merged with a K-12 program,
the Institute for Strengthening the Understanding of Mathematics and Sci-
ence (SUMS). In 2008, MTBI/SUMS expanded again to become embedded
in what is now the Simon A. Levin Mathematical, Computational and Mod-
eling Sciences Center (MCMSC). The purpose of the larger center is now to
connect MTBI’s education-through-research mission directly to undergrad-
uate and graduate programs in the mathematical sciences and to cutting
edge research activities at the interface of the mathematical, life, and social
sciences.

Now, in our 20th year, MTBI/SUMS has been extraordinarily successful
by most traditional measures. From 1996 through its 2014 summer program,
MTBI has recruited and enrolled a total of 423 regular first-time undergradu-
ate students and 91 advanced (returning) students. MTBI students have been
prolific researchers, with 180 technical reports 1, and a large number of ref-
ereed publications. (including but not limited to the following representative
publications, [17, 43, 14, 16, 15, 19, 24, 25, 26, 27, 28, 31, 33, 36, 37, 40, 46]).

1
http://mtbi.asu.edu/research/archive
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MTBI has also been successful in recruiting and retaining students in
mathematical sciences. Through December 2014, 249 out of 357 (70%) of U.S.
MTBI student participants had enrolled in graduate or professional school
programs and 109 MTBI student participants have completed their Ph.Ds.
74 students have received their Ph.D.s since 2008, for a Ph.D. completion
rate of a little over 10 Ph.D.s per year.

MTBI has received funding from Cornell University, Arizona State Uni-
versity, Los Alamos National Laboratory, the Sloan Foundation, the NSA,
and NSF. NSF and NSA currently fund MTBI each at roughly 120K per year,
with graduate mentors supported by teaching and research assistantships
(127 since 1996) mostly funded via university funds, and Sloan fellowships.

The program has also received external recognition in the form of mul-
tiple national awards. The Director of MTBI was awarded a Presidential
Award for Excellence in Science, Mathematics and Engineering Mentoring
(PAESMEM) in 1997 and the American Association for the Advancement of
Science Mentor Award in 2007. Also in 2007, the AMS recgonized MTBI as a
Mathematics Program that Makes a Di↵erence. MTBI’s partner high-school
program, SUMS, was recognized the Presidential Award for Excellence in Sci-
ence, Mathematics, and Engineering Mentoring in 2002, and MTBI received
the same award in 2011.

The reason for MTBI’s extraordinary success is that the primary goal of
MTBI has always been to e↵ect social change. MTBI/SUMS’s mission is to
encourage student — especially women, Chicano/Latino, Native American,
and African American students — to pursue advanced degrees in the compu-
tational and mathematical sciences, with particular emphasis in the applica-
tions of mathematics to the life and social sciences. 249 (70%) of MTBI un-
dergraduates are underrepresented minorities and/or members of the Sloan
Pipeline Program (Underrepresented minorities (URMs) include Hispanic,
African-American and Native American students). Since January 1995, 69
(77%) of US citizen or permanent resident alumni completing PH.D.s have
been URMs, and 51% of all MTBI Ph.D. recipients are women. Research,
funding, and external recognition are means to purse the ultimate mission
of social change, and the mission of social change results in quality research,
funding, and recognition. Students — particularly under-represented stu-
dents from impoverished backgrounds — have a keen interest in social change.
Faculty are inspired by this mission as well many guest faculty participate
frequently, voluntarily and without pay.

In short, we have built and continue to build a community model to
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start new undergrad majors and PhD degrees over the past 19 years —
its e↵ectiveness is tied to the spirit of community, volunteerism, and service
that pervades every aspect of the program. From this perspective of e↵ecting
social change through mathematical research, MTBI has succeeded, but there
remains much to do. It is this ongoing mission and the continued sense of
dissatisfaction with MTBI’s successes to date that has driven MTBI faculty
and sta↵ to continue to do better, to continue to grow over the past 19 years
from a simple summer REU to a national recognized pipeline program that
tracks and supports under-represented students from high-school to tenure.

In particular, ever since the merger with SUMS in 2004, MTBI/SUMS
has become increasingly interested in K-12 education. The addition of SUMS
and partnership with other high-school programs in Arizona has improved
our ability to serve the URM population by giving us the ability to grow
URM talent for MTBI, rather than rely solely on the recruitment of students
who make it to college on their own — similar to the way that the REU
grows talent to be recruited to graduate school.

However this partnership has also made us aware of other ways in which
K-12 partnerships can be mutualistic. A short example of this type of col-
laboration is the Center’s newly funded initiative to reintroduce a teaching
and mentorship component to our programs. MTBI will be collaborating
with Dr. Raquell Holmes of ImproviScience to provide educational research-
based workshops on mentoring and collaboration for both student mentors
and faculty.

More generally, we are proposing two more initiatives to strengthen mutually-
beneficial ties between mathematical science REUs and communities of edu-
cators. We would like other REUs to be inspired by the goal of social change
and join us in these or similar initiatives. We intend to show how REUs
are uniquely positioned to improve e↵ect social change by collaborating with
mathematics education researchers and by recruiting from the population of
qualified teaching majors. We will do this using examples from mathematics
education research as well as from MTBI/SUMS itself; and in the process
we hope to give the reader a more detailed picture of how MTBI works, the
mechanics of its successes to date and, we hope, the desire to have a dialogue
that help us to improve what we do by learning first-hand what other groups
have done so well over several decades.
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2 The Mechanics of MTBI/SUMS

There are a number of factors that play a role in the educational success of
MTBI/SUMS. The most important seem to be the mathematical content,
the reversal of hierarchy, and the community model.

MTBI/SUMS summer sessions are divided into two parts. For the first
three and a half weeks, students attend lectures and do homework (the math-
ematical content). For MTBI this content includes di↵erence and di↵eren-
tial equations, statistics, stochastic processes, agent based modeling2, and
computer simulation. The program roughly follows the text of Brauer and
Castillo Chavez [4], supplemented by guest lectures. For SUMS, this content
is typically di↵erence equation modeling only, based on an idea from Robert
May [30].

The second half of the program is student-driven group research projects.
In MTBI’s initial prototype year (1996), the projects were assigned as tasks.
However, this did not generate the desired student buy-in or the experience
of doing authentic research. In subsequent years, students were expected to
design their own projects, while returning students, graduate students and
faculty served in advising roles. Because students choose their topic of study,
they frequently know more about the situation than the mentors (flipped
hierarchy). The mentors contribute mathematical and modeling experience,
but rarely situational knowledge [6, 7, 11].

Over the entire program, the faculty deliberately work to create a re-
search community (the community model). MTBI is a residential program,
and during the first half of the program, participants are deliberately given
far more work than they can complete on their own, forcing them to make use
of their peers. Even in groups, students typically work 10-12 hours per day,
six days a week throughout the eight weeks. In order to explicitly encourage
collaboration, students are organized and participate in weekly group meet-
ings. These groups then form the foundation of the collaborative research
project. On alternating weekends, students participated in organized activ-
ities such as day trips, water parks, a Fourth of July celebration and other
social outings. These activities built esprit-de-corps among the students and
facilitated their teamwork in research. Students are also encouraged to return
as advanced students, graduate students, post-docs, and faculty – building

2
models of large numbers of individuals acting according to pre-determined algorithms;

usually, but not always simulated via computer
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long-term bonds with the research community and serving as role models for
new students.

The dynamics of the community model of MTBI have been discussed in
detail elsewhere [17, 11]. So in this article, we will discuss the importance of
the other two factors: the mathematical content and the reversal of hierarchy.

3 The reversal of hierarchy

Research modeling experiences form the keystone of the MTBI/SUMS sum-
mer experience. The entire program is designed to prepare students to suc-
cessfully pursue a research modeling experience. Students are trained in
mathematical biology techniques, but in the final half of the session, they
apply these techniques to their own curiosities. In MTBI this has led to
final projects in a variety of diverse topics including but not limited to: the
three strikes law [42], gang recruitment [1], education [3, 20], immigration
[13], political third party formation [38], mental illness [18, 21, 25], pollution
[5],obesity [22], drug use [32, 43], and even MTBI itself[17]. Students choose
these topics because they are personally meaningful. Nearly every one of
these o↵-topic applications is chosen because a group member has personal
experience with the problem. Either they themselves, or a family member,
or a close friend has run afoul of a gang, or has dropped out, or struggles
with a mental illness. This personal experience both motivates the group
and supplies them with valuable insider expertise.

Because MTBI students choose their own research projects, they fre-
quently know more about the topic than their graduate student and faculty
mentors. This creates the “reversal of hierarchy” in which the students take
the leadership role in the project, and the mentors serve as consultants. As
consultants, the mentors provide missing mathematical expertise to judge
the feasibility of the project, suggest appropriate tools, and tutor the stu-
dents in any additional techniques they need for their project that were not
covered in the general lectures.

SUMS students have similar experiences, but the mentor role is even more
involved. Consider the most recent SUMS year, in which the students were
trained in di↵erence equation techniques for mathematical biology. Their in-
terests, however, were diverse, and they did projects in economics, education,
driving safety, and zombie epidemiology. In order to complete these projects,
some student teams required additional mentoring in statistical and agent-
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based programming tools not originally covered by the di↵erence equation
curriculum.

This student leader with consulting mentor approach is a critical factor to
the success of MTBI/SUMS. Without students choosing their own projects, a
vital portion of the research experience is missing, and students are not truly
doing research. Without the mentor in a consulting role, projects quickly
exceed both the mathematical abilities of the students and the time they
have available to complete the project. One of the key roles of the mentor is
helping students slim their interests down to a project that can be completed
in four weeks.

4 The importance of students doing research

Making the student the leader of the research is vital because it makes the
mathematical experience real. When students are in the leadership role, they
must draw on their own experiences to make sense of mathematics and to
make decisions. Contrast this with experiences that students typically have
in modeling in K-12 schools.

Reusser [35] describes the story of 97 first and second graders asked the
following nonsensical questions:

“There are 26 sheep and 10 goats on a ship. How old is the
captain?”
“There are 125 sheep and 5 dogs in a flock. How old is the
shepherd?”

76 of those 96 first and second graders were able to provide a numerical
solution to these questions, by finding an appropriate operation for the num-
bers that would result in an age. In the first task adding to 36 years old, and
in the second task dividing to 25 years old.

The problem stems from the social norms that are quickly established in
a mathematics classroom. Every question must have an answer, and that
answer must be reached using the tools that are currently being studied.
Or, as Reusser put it: “Almost every systematic dealing with ambiguity and
unsolvability is factually excluded from textbooks, from curricula, and from
the school setting where it even seems alien.”3

3
For more cases and anecdotes on lack of sense making in school mathematics, see

Schoenfeld [41]
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4.1 Pseudocontext

It should not surprise any of us that students learn that mathematics is not
about making sense. Textbooks have long histories of including “modeling”
exercises that do not require students to make sense, in some cases the tasks
are actively hostile to making sense. Jo Boaler coined the term “pseudocon-
text” for refering to these types of tasks, saying:

A restaurant charges $2.50 for 1
8 of a quiche. How much does the

whole quiche cost?
...
Everybody knows that people work together at a di↵erent pace
than when they work alone, that food sold in bulk such as a whole
quiche is usually sold at a di↵erent rate than individual slices, and
that if extra people turn up at a party more pizza is ordered or
people go without slices – but none of this matters in Mathland.
[2, p. 52]

If students were required to make sense of the quiche task in the context
of their real world experience of purchasing quiche, then the quiche task [2]
[p. 52] is just as unsolvable as a captain problem from Reusser [35]. The
quiche task is only “solvable” because of the social norms established in the
classroom. The question is being asked in a math class, and a question in a
math class must have a solution, therefore the normally incorrect assumption
that the price of quiche is the sum of the price of its slices must be valid here.
The same solvability assumption that allows students to answer the quiche
task “correctly” is also what leads the majority of students to solve the
captain task incorrectly.

4.2 Research modeling

Contrast this type of assigned task with the experiences of SUMS students,
or with the following case from Resnick [34, p. 68–74]. Resnick describes
two high school students, Ari and Fadhil, who were working with the agent
based modeling program StarLogo at the same time they were enrolled in
driver’s education. Ari and Fadhil developed a curiosity: they wanted to
know what caused tra�c jams. Using StarLogo, Ari and Fadhil developed
several simulations of drivers on a highway, and explored driver behaviors
that contributed to or eliminated tra�c jams. Although Ari and Fadhil did

7



not succeed in controlling their simulated tra�c jam, they discovered quite
a bit about tra�c jam behavior: that tra�c jams moved as waves in the
direction opposed to tra�c, and that starting all cars at the same initial
speed did not prevent a tra�c jam, so long as the cars were unevenly spaced.

Ari and Fadil’s story di↵ers from the quiche example in two critical ways:
first, there was no externally imposed task. Instead Ari and Fadil were
pursuing their own curiosities. Secondly, Ari and Fadil were not looking
for a solution to be validated by an authority figure. They were looking
for the understanding that would satisfy their curiosity. Taken together, we
have two high schools students pursing a non-mathematical curiosity with
mathematical tools, while believe that no pre-existing solution existed. In
other words, Ari and Fadil were engaged in mathematical research. This is
exactly the sort of activity that quiche tasks do not prepare students for.

Based on the experiences of MTBI/SUMS students, as well as Ari and
Fadhil’s example, we propose three criteria for identifying research modeling
activity:

1. The problem is based on the student’s non-mathematical experience.

2. (Therefore) The problem originates with the student, and

3. The goal of the activity is understanding, not a solution.

5 Scaling up to K-12

It should seem obvious that implementing research modeling experiences in
K-12 education is desirable, both as a tool for recruiting students to STEM
fields and training tool for preparing students for work in these fields. How-
ever, with the current state of teacher training, it is not feasible beyond a
limited scale. There are small-scale programs that work on exposing K-12
students to modeling experiences, including SUMS, the St. Laurence County
Mathematics Partnership at Clarkson, the Center for Connected Learning at
Northwestern, or StarLogo at MIT. However these programs revolve around
the expertise of a Ph.D. applied mathematician or graduate student doing the
leading and the mentoring. There seem to be three barriers to implementa-
tion modeling research activities on a broad scale in K-12: First, students are
not mathematically prepared to engage in these types of activities; second,
teachers are not mathematically agile enough to mentor them; and third,
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teachers do not have the experience to even imagine these sorts of activities
in the first place.

5.1 Preparing MTBI/SUMS students for research

All REUs prepare students to do research, and an examination of these pro-
grams can reveal ways to prepare students to do research that can be scaled
up to a larger population. Again, we use MTBI/SUMS as an example.

In order for a reversal of hierarchy to be successful, students must first
be in a position where satisfying a curiosity mathematically seems natural.
Students must be mathematically prepared so that they can be successfully
inspired to think of the types of curiosities that are well satisfied by a mathe-
matical approach, and so that they can pursue those curiosities with enough
mathematical competence that mentoring is feasible.

The lecture portion of MTBI/SUMS makes use of a third type of modeling
activity. In the middle of the spectrum between pesudocontext and research
modeling lies the modeling exercise, exemplified by these problems from the
MTBI and SUMS homework assignments:

1. (SUMS 2014) Using your favorite method find all equilibria of the model
(you can assume � is a positive constant) :

P

t+1 =
�P

t

(1 + P

t

)2

2. (SUMS 2014) Say we are studying a nonlinear model made up of preda-
tors (P ) and prey (Q), where �sPQ denotes the deleterious e↵ect P

has on Q, and kPQ represents the positive e↵ect of Q on P . What is
the biological interpretation of the assumption that s > k ?

3. (MTBI 2014) Limpets and seaweed live in a tide pool. The dynamics
of this system are given by the di↵erential equations

ds

dt

= s� s

2 � sl

dl

dt

= sl � l

2
� l

2

l � 0, s � 0
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(a) Determine all equilibria of this system.

(b) For each nonzero equilibrium determined in part (a) evaluate the
stability and classify it as a node, focus, or saddle point.

(c) Sketch the flows in the phase plane.

These modeling exercises have some similarity to pseudocontext tasks.
Similar problems — in which a context is provided along with an equation
and then the student is asked to work only with the equation — are a staple
of “application” problems in nearly every textbook. However, MTBI/SUMS
modeling exercises are demonstrably successful in preparing students for re-
search modeling while other superficially similar exercises are not.

Unlike the research modeling activities described above, these are much
more structured exercises that target the development of specific mathemati-
cal tools used in studying dynamical systems. Although the models provided
in these examples have biological meaning, the student is not always asked
to interact with the problem in context. In the above examples, the student
is only required to use the context in Example 2. Examples 1 and 3 only
require that the student interact with the task mathematically. The context
could be completely excluded and the task could still be solved. We suspect
that the di↵erences between these exercises and pseudocontect are not so
much in the individual exercises, but rather in their use: their place in the
larger MTBI/SUMS program.

Every student in MTBI/SUMS knows that the session will end with an
assignment to do their own project. In this scenario,these modeling exercises
are embedded in take on a di↵erent significance. While the context may
not be mathematically necessary to solve the exercise in front of them, it
is necessary to prepare them for their projects. The context becomes an
example of the types of modeling situations that can be addressed with this
particular mathematical approach. Students know that they will need these
examples to pursue their own projects. So it is not the individual exercise that
is important for the goal of teaching a modeling persepctive, but rather the
accumulation of exercises that show what types of problems can be addressed
mathematically, and what di↵erent types of scenarios lend themselves to
di↵erent approaches.

In addition to situational context, MTBI/SUMS modeling exercises must
also be examined in their mathematical context. An isolated exercise may
just be about applying a particular mathematical technique, such as finding
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a Jacobian. In the larger context, however, exercises are selected so that
students will experience critical distinctions in dynamical systems: between
discrete and continuous, linear and nonlinear, deterministic and stochastic.
Each distinction a↵ects both the behavior of the system, the degree to which
the system can be explored, and the tools used to explore it. It is in this area
that teacher training is lacking. They rarely have the experiences necessary
to emphasize these distinctions in their own mind.

5.2 Attending to teacher training

Teachers tend to teach mathematics in the way that they were taught, and
the mathematics that teachers learn in school and teach in school is deficient
for preparing students for mathematical research. Exploring the ways in
which REUs prepare students for mathematical research can highlight areas
of school mathematics that need changing, and areas of teacher training that
can be improved. Consider the following examples based on MTBI’s high-
lighted distinctions: between discrete and continuous, linear and nonlinear,
deterministic and stochastic

5.2.1 Discrete and continuous

The distinction between discrete and continuous has a huge impact on the be-
havior of dynamical systems. While a one dimensional discrete system such
as P

n+1 = rP

n

(1 � P

n

) can exhibit chaotic behavior, chaos is impossible in
continuous systems of fewer than three dimensions, no matter how complex.
However, work with students has shown that the distinction between discrete
and continuous can be very di�cult for students who are used to exercises
in plotting points and connecting the dots [29]. Even highly successful stu-
dents will show a preference for whole number counting and regularly spaced
rational numbers that interfere with their ability to draw conclusions about
continuous systems [9, 10, 12], and secondary teachers su↵er from similar
interference from discrete thinking [45].

5.2.2 Linear and nonlinear

In traditional K-12 schooling “linear” is a modifier that describes primar-
ily functions or graphs of functions, so linear means “straight” and nonlin-
ear means “curved.” The meaning of linear becomes slightly extended when
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classes begin to discuss “systems of linear equations,” but a “linear equation”
really only means that each variable can be expressed as a linear function
of the others, that is, “linear,” in this sense, is still modifying function. In
general, K-12 students and teachers deal with models that depend on linear
concepts and so learning the di↵erence between linear and nonlinear problems
is challenging particularly at the K-12 level.

Robert May [30], uses “linear” as a modifier not only for “linear functions”
or “linear equations,” but also for “linear systems” and “linear problems,”
a critical distinction when the goal is to study dynamics. May distinguishes
between linear or nonlinear systems of di↵erential equations and linear or
nonlinear di↵erence equations — the principle of superposition being in gen-
eral lost in the nonlinear world. For example, in the equation X

t+1 = aX

t

,
X is a nonlinear (more precisely geometric) function of t, but the equation
is a “linear equation” because X

t+1 is a linear function of X
t

; the model
is based on linear concepts. In contrast X

t+1 = aX

t

(1 � X

t

) (*),“arguably
the simplest interesting nonlinear di↵erence equation,” with X

t+1 a nonlinear
function of X

t

, is not based on linear concepts and as a consequence, here
we lose superposition. May sees this distinction as critical saying:

The elegant body of mathematical theory pertaining to linear
systems (Fourier analysis, orthogonal functions, and so on), and
its successful application to many fundamentally linear problems
in the physical sciences, tends to dominate even moderately ad-
vanced University courses in mathematics and theoretical physics.
The mathematical intuition so developed ill equips the student
to confront the bizarre behaviour exhibited by the simplest of
discrete nonlinear systems, such as equation [(*)]. Yet such non-
linear systems are surely the rule, not the exception, outside the
physical sciences.[30]

In his classic Real and Complex Analysis, Walter Rudin introduces the
exponential function as the most important function in mathematics [39, p1].
The exponential family is typically defined as the unique solution of the linear
problem dx

dt

= ax, x(0) = x0, that is, when the rate of change of a function
is proportional to the value of the function itself 4. The solution of this
linear di↵erential equation is by definition the exponential function. Part

4
Generalizations include, for example,

dX
dt = AX where A is an nxn matrix and X is

an nx1 vector
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of the importance of the exponential function lies on its ability “locally”
approximate nonlinear systems; no di↵erent than using tangent planes to
approximate surfaces locally, a process referred to as “lineararization” or
“linear analysis” [30], intimately connected to the principle of superposition.

Robert May [30] has suggested that this distinction between linear or
nonlinear systems or problems (concepts based on the study of dynamics) be
introduced to students as early as possible in their education, before calculus.
Examples such as SUMS show that this suggestion can be implemented real-
istically, and further experiments show that the linear property (rate propor-
tional to amount) used to define an exponential function can be realistically
introduced before calculus as well [10, 44].

5.2.3 Deterministic and stochastic

Lastly, stochastic processes (such as agent based models) have been shown to
have tremendous applications in helping students develop a research model-
ing mindset [34]. Because the high degree of complexity can be managed by
computer experiment, a little programing training allows students to explore
complex systems they would not be mathematically quipped to handle with
algebraic tools. They can be thought of as a “gateway drug” into mathe-
matical modeling: a gentle beginning that encourages students to try harder
math later on. Agent-based models and Markov chains (both discrete and
continuous) are popular techniques among the students of both MTBI and
SUMS.

5.2.4 Suggestions

Here, REUs can have a social impact by inviting mathematics education
researchers to observe and study. Mathematics education researchers can
take what they learn about e↵ective preparation for research from REUs and
use these results to improve teacher-training programs, or to inspire further
research into high school student learning. In fact, much of the research cited
above [8, 9, 10, 12] was born from collaborations between a mathematics
education researcher and MTBI. This example shows the possibility of such
fruitful collaboration 5.

5
For more on the role of example cases in science, see [23]
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5.3 Attending to teacher’s experiences

However, the greatest barrier to the implementation of mathematical model-
ing research activities in schools is simply that very few teachers can imagine
them. Teachers rarely attend REUs and rarely attend graduate school in
applied mathematics. The simple fact is, the vast majority of people charged
with teaching mathematical modeling have never done it.

Without some sort of experience in mathematical modeling, teachers can-
not imagine what it is, let alone how to implement it in their own classrooms.
Instead, they are left to rely on the experiences that they do have: textbook
exercises and pseudocontext examples in which the applications are informed,
but not genuine or meaningful. This cycle then perpetuates itself as future
teachers grow up and learn in exactly the same limited environment.

Here again, REUs can have an impact. Teachers are trained as under-
graduates. Secondary teachers in particular receive extensive mathematical
training that qualifies them for REUs, and REU programs can provide ex-
actly the mathematical research experience that teachers need in order to
begin imagining a di↵erent sort of task for their students. REUs do not gen-
erally recruit from this pool because teachers are rarely interested in graduate
study, and not all REUs will be interested or even appropriate for this sort of
work; but for REUs that are interested in e↵ecting social change, recruiting
qualified undergraduate mathematics education majors is one possible way
to having a large impact.

6 Recommendations and Future Work

REUs have tremendous potential for social impact. MTBI is one example of
such a program, one which has been tremendously successful because of its
social agenda. Not all REU directors will be interested in taking this route,
and that is understandable. But for REU directors who wish to use their
program e↵ect social change, we have some recommendations. Improving K-
12 education is an area of high need, and this is an area where social impacts
can be made with only small changes to an REU program, or more sweeping
changes if desired.

First: build collaborations with mathematics education faculty. Collabo-
rations between MTBI/SUMS and mathematics education faculty have been
fruitful, resulting in improved understanding of how the REU operates, well
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received mentorship workshops for REU faculty and graduate students, and
improvements to teacher training programs run by the mathematics edu-
cation faculty. Building a collaboration with a mathematics education re-
searcher need not be elaborate or time consuming. It is simply a matter of
issuing an invitation to the right person.

Second: recruit secondary mathematics education majors. Future teach-
ers can have a huge impact. A successful teacher will teach upwards for
5000 students in their lifetime. Creating good mathematical modeling ex-
periences for 5000 students improves mathematical citizenship for everyone,
and increases interest in STEM major programs. Recruiting and contribut-
ing to the training of several future teachers has the potential to dramatically
change the landscape that undergraduate programs recruit from. Here again,
we do not suggest that REUs make dramatic changes to their program. Sec-
ondary mathematics education majors are qualified for these programs by
their coursework, and adjusting the curriculum would eliminate the authen-
ticity of the research experience. Insteady we suggest that REU faculty
simply make an e↵ort to invite these students (particularly strong students
that the faculty personally encounter in their teaching), and market to the
demographic. REU development does not happen all at once. Similar to the
way MTBI has changed over decades, programs can scale up as the needs of
these students are better understood through experience.
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